MATH2040 Linear Algebra II

Tutorial 4

October 6, 2016

1 Examples:

Example 1 (Example of stochastic process) (Textbook: P.288)
Suppose there are two cities named City A and City B, the population in these cities remains constant throughout the years but the is a movement of people between two cities every year. The probabilities that how the citizens may move to another city or not are summarized in the following table:

	Currently living in City A	Currently living in City B
Living in City A next year	0.9	0.02
Living in City B next year	0.1	0.98

(a) Find the probability that someone currently live in City A will move to City B after two years.
(b) Suppose currently there are 600 people live in City A and 600 people live in City B, find the population of City A and City B in the long term, i.e. after many years.

Solution

First, we write the probability matrix $A=\left(\begin{array}{cc}0.9 & 0.02 \\ 0.1 & 0.98\end{array}\right)$ which describes the probabilities of people may move, then $A^{2}=\left(\begin{array}{ll}0.812 & 0.0376 \\ 0.188 & 0.9624\end{array}\right)$.
(a) The required probability is just $\left(A^{2}\right)_{21}=0.188$.
(b) Let $P=\binom{600}{600}$, then we can find the long term population by considering $A^{m} P$ as $m \rightarrow \infty$.

After determining the eigenvalues and eigenvectors of A, as A has distinct eigenvalues, so A is diagonalizable and

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & 0.88
\end{array}\right)=D=Q^{-1} A Q=\left(\begin{array}{cc}
1 & 1 \\
-5 & 1
\end{array}\right)\left(\begin{array}{cc}
0.9 & 0.02 \\
0.1 & 0.98
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{6} & -\frac{1}{6} \\
\frac{5}{6} & \frac{1}{6}
\end{array}\right)
$$

As

$$
\lim _{m \rightarrow \infty} A^{m}=\lim _{m \rightarrow \infty}\left(\begin{array}{cc}
\frac{1}{6} & -\frac{1}{6} \\
\frac{5}{6} & \frac{1}{6}^{2}
\end{array}\right)\left(\begin{array}{cc}
1^{m} & 0 \\
0 & 0.88^{m}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-5 & 1
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{6} & \frac{1}{6} \\
\frac{5}{6} & \frac{5}{6}
\end{array}\right)
$$

Therefore,

$$
\lim _{m \rightarrow \infty} A^{m} P=\binom{200}{1000}
$$

which means after many years, the population of City A and City B will be 200 and 1000 respectively.
Remark: $\lim _{m \rightarrow \infty} A^{m}$ exists only if A satisfies certain conditions.

Example 2

Let T be a diagonalizable linear operator on a finite dimensional vector space V, and let m be any positive integer. Prove that T and T^{m} are simultaneously diagonalizable.

Definition: Two linear operators T and U on a finite-dimensional vector space V are called simultaneously diagonalizable if there exists an ordered basis β for V such that both $[T]_{\beta}$ and $[U]_{\beta}$ are diagonal matrices. Similarly, $A, B \in M_{n \times n}(\mathbb{F})$ are called simultaneously diagonalizable if there exists an invertible matrix $Q \in M_{n \times n}(\mathbb{F})$ such that $Q^{-1} A Q$ and $Q^{-1} B Q$ are diagonal matrices.

Solution

By the definition of simultaneously diagonalizable, we need to show that there exists an ordered basis β for V such that $[T]_{\beta}$ and $[U]_{\beta}$ are both diagonal matrices. In other words, β is eigenbasis for both T and T^{m}.

WLOG, assume $\operatorname{dim}(V)=n$, and since T is a diagonalizable linear operator, so there exists an eigenbasis $\beta=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\}$ such that $[T]_{\beta}$ ia diagonal. Note,

$$
T\left(\beta_{i}\right)=\lambda_{i} \beta_{i} \Rightarrow T^{2}\left(\beta_{i}\right)=\lambda_{i} T\left(\beta_{i}\right) \Rightarrow T^{2}\left(\beta_{i}\right)=\lambda_{i}^{2} \beta_{i} \Rightarrow T^{m}\left(\beta_{i}\right)=\lambda_{i}^{m} \beta_{i} \quad \forall i=1,2, \ldots, n
$$

Therefore, β_{i} is also eigenvector of U with corresponding eigenvalue λ_{i}^{m} for all $i=1, \ldots, n$. So β is an eigenbasis of T^{m} and $\left[T^{m}\right]_{\beta}$ is diagonal.

2 Exercises:

Question 1 (Section 5.2 Q7):
For $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right) \in M_{2 \times 2}(\mathbb{R})$, find an expression for A^{n}, where n is an arbitrary positive integer.
Question 2 (Section 5.2 Q8):
Suppose that $A \in M_{n \times n}(\mathbb{F})$ has two distinct eigenvalues, λ_{1} and λ_{2}, and that $\operatorname{dim}\left(E_{\lambda_{1}}\right)=n-1$. Prove that A is diagonalizable.
Question 3 (Section 5.2 Q17):
(a) Prove that if T and U are simultaneously diagonalizable linear operators on a finite dimensional vector space V, then the matrices $[T]_{\gamma}$ and $[U]_{\gamma}$ are simultaneously diagonalizable for any ordered basis γ.
(b) Prove that if A and B are simultaneously diagonalizable matrices, then L_{A} and L_{B} are simultaneously diagonalizable linear operators.
Question 4 (Section 5.2 Q18):
(a) Prove that if T and U are simultaneously diagonalizable linear operators, then T and U commute (i.e. $T U=U T$).
(b) Prove that if A and B are simultaneously diagonalizable matrices, then A and B commute.

Solution

(Please refer to the practice problem set 4.)

